Wednesday, August 20, 2025

Divisibility Rules 2 to 12

                                                                           Divisibility Rules 2 to 12

In this section, let us learn about basic divisibility tests from 2 to 12. The divisibility rule of 1 is not required since every number is divisible by 1.

Divisibility by number

Divisibility Rule

Divisible by 2

A number that is even or a number whose last digit is an even number, i.e., 0, 2, 4, 6, and 8.

Divisible by 3

The sum of all the digits of the number should be divisible by 3.

Divisible by 4

The number formed by the last two digits of the number should be divisible by 4 or should be 00.

Divisible by 5

Numbers having 0 or 5 as their ones place digit.

Divisible by 6

A number that is divisible by both 2 and 3.

Divisible by 7

Subtracting twice the last digit of the number from the remaining digits gives a multiple of 7.

Divisible by 8

The number formed by the last three digits of the number should be divisible by 8 or should be 000.

Divisible by 9

The sum of all the digits of the number should be divisible by 9.

Divisible by 10

Any number whose ones place digit is 0.

Divisible by 11

The difference of the sums of the alternative digits of a number is divisible by 11.

Divisible by 12

A number that is divisible by both 3 and 4.


Divisibility Rules Chart and Examples

Let us try to understand the above divisibility tests with examples.

·         Is 280 divisible by 2? Yes, 280 is divisible by 2 as the units place digit is 0.


·         Is 345 divisible by 3? Yes, 345 is divisible by 3, as the sum of all the digits, i.e., 3 + 4 + 5 = 12, and 12 is divisible by 3. So, 345 is divisible by 3.

 

·         Is 450 divisible by 4? No, 450 is not divisible by 4 as the number formed by the last two digits starting from the right, i.e., 50 is not divisible by 4.


·         Is 3900 divisible by 5? Yes, 3900 is divisible by 5 as the digit at the units place is 0 which satisfies the divisibility rule of 5.

 

·         Is 350 divisible by 6? The sum of all the digits of 350 is 8, so it is not divisible by 3. Hence it cannot be divisible by 6, as a number needs to be a common multiple of both 2 and 3 to be a multiple of 6.

 

·         357 is divisible by 7 as when we subtract the twice of the ones place digit, 7 × 2 = 14, and subtract it from the remaining digits 35, we get 35 -14 = 21, which is divisible by 7. So, 357 is divisible by 7.


·         79238 is not divisible by 8, as the number formed by the last three digits 238 is not completely divisible by 8.

 

·         875 is not divisible by 9, as the sum of all the digits, 8 + 7 + 5 = 20 is not divisible by 9.

          

Now, let us take the number 1000 and see its divisibility by 2 to 10. It is clearly seen in the following figure that 1000 is divisible by 2, 4, 5, 8, and 10, and not divisible by 3, 6, 7, and 9. We find this by applying the divisibility rules of 2 to 10, and not by performing division which can be more time-consuming.


Divisibility Rule of 11 with Example

The divisibility rule of 11 can also be understood in a simpler way which says that if the difference between the sums of the alternate digits of the given number is either 0 or divisible by 11, then the number is divisible by 11. Let us understand this with an example. These alternate digits can also be called the digits in the even places and the digits in the odd places.

Example: Which of the given numbers is exactly divisible by 11?

a.) 86416

b.) 9780

Solution:

a.) In 86416, if we take the alternate digits starting from the right, we get 6, 4, and 8 and the remaining alternate digits are 1 and 6. Now, 6 + 4 + 8 = 18, and 1 + 6 = 7. After finding the difference between these sums, we get 18 - 7 = 11, which is divisible by 11. Therefore 86416 is divisible by 11. It is to be noted that these alternate digits can also be considered as the digits on the odd places and the digits on the even places.

a.) In 9780, if we take the digits on the odd places, we get 9 and 8 and the digits at the even places are 7 and 0. Now, 9 + 8 = 17, and 7 + 0 = 7. After finding the difference between these sums, we get 17 - 7 = 10, which is neither 0 nor divisible by 11. Therefore 9780 is not divisible by 11.

 

Divisibility Rule of 11 For Large Numbers

As we know from the divisibility rule of 11, a number is divisible by 11 if the difference between the sum of the digits at the odd and the even places are either equal to 0 or is divisible by 11 without leaving a remainder. For example, let us find if the number 2541 is divisible by 11 or not. To check this, let us apply the divisibility test by 11 to the number 2541. In the number 2541, the digits at the odd positions are 2 and 4 (if we start from the left), hence the sum is 6. The numbers at the even positions are 5 and 1, hence their sum is 6. Now, the difference between the sums obtained is 6 - 6, which is equal to 0. We know that 0 is divisible by every number, so it is divisible by 11. Therefore, the number 2541 is divisible by 11.

 

Divisibility Rule of 11 and 12

Divisibility Rules of 11 and 12 are different. In the divisibility rule of 11, we check to see if the difference between the sum of the digits at the odd places and the sum of the digits at even places is equal to 0 or a number that is divisible by 11, whereas the divisibility rule of 12 states that a number is divisible by 12 if it is completely divisible by both 3 and 4 without leaving a remainder. Now, let us take a number and check for the divisibility rule of 11 and 12.

Example: Check the divisibility test of 11 and 12 on the number 764852

Solution: Let us apply the divisibility rule of 11 on this number.

Sum of the digits at odd places (from the left) = 7 + 4 + 5 = 16

Sum of the digits at even places = 6 + 8 + 2 = 16

Difference between the sum of the digits at odd and even places = 16 - 16, which is 0.

Therefore, 764852 is divisible by 11.

Let us check if the number is divisible by 12 or not.

For this let us check if the number is divisible by both 3 and 4. Sum of all the digits = 7 + 6 + 4 + 8 + 5 + 2 = 32. The Sum of 3 and 2 is 5. 5 cannot be divided by 3 completely. Therefore, 764852 is not divisible by 3. Let us also check the divisibility by 4. For a number to be divisible by 4, the last two digits of the number should be either '00' or a number divisible by 4. In the given number, the last two digits are 52. When 52 is divided by 4, the quotient is 13 and the remainder is 0. Hence, we can say that the number 764852 is divisible by 4.

But for a number to be divisible by 12, it should pass the divisibility test of 3 as well as 4. Here, we see that the number is not divisible by 3. So we can say that it is not divisible by 12. From the example, we can understand that divisibility rules for 11 and 12 are totally different and it is not necessary that a number that is divisible by 11 should be divisible by 12 also.






 



Thursday, August 14, 2025

Unit digit of number system

 

                                              3.Unit digit of number system (only 3 Rule)

Rule (1): - same number and same unit digit

Digits 0, 1, 5, and 6:

 


Example: -

05 = 0: unit digit is 0, the number itself.

17 = 1: unit digit is 1, the number itself.

53 = 5: unit digit is 5, the number itself.

64 = 6: unit digit is 6, the number itself.

 

Question 1: Find the unit digit of 756345.

 

Answer: Simply find 6345 which will give 6 as a unit digit, hence the unit digit of 756345 is 6.

 

Question 2: Find the unit digit of 34532456.

 

Answer: Find 532456 which will give 5 as a unit digit, hence the unit digit of 34534566 is 5.

 

 

Rule (2): - Power of odd then unit same and power of even then case of ‘4’ 6 unit and case of ‘9’ 1

Digits 4, 9

 



Example: -

42 = 6: if 4 is raised to the power of an even number, unit digit will be 6.

43 = 4: if 4 is raised to the power of an odd number, unit digit will be 4.

92 = 1: if 9 is raised to the power of an even number, unit digit will be 1.

93 = 9: if 9 is raised to the power of an odd number, unit digit will be 9.

Question 1: Find the unit digit of 41423.

 

Answer: 23 is an odd number, so 4odd=4, hence the unit digit is 4.

 

Question 2: Find the unit digit of 2982.

 

Answer: 82 is an even number, so 9even=1, hence the unit digit is 1.

 

Rule (3): Division rule of 4 then factoring the remainder to find unit digit

Digits 2, 3 and 7, 8 (Repeat 4-digit form)

 



1. 21 = 2, unit digit is 2.

2. 22 = 4, unit digit is 4.

3. 23 = 8, unit digit is 8.

4. 24 = 16, unit digit is 6.

5. 25 = 32, unit digit is 2.

 

Question 1: Find the unit digit of 257345.

 

Answer: 345/4 = 1, so 71, hence the unit digit is 7.

 

Question 2: Find the unit digit of 42343.

 

Answer: 43/4 = 3, so 33, hence 7 is the unit digit.

 

Question 3: Find the unit digit of 28146.

 

Answer: 146/4 = 2, so 82, hence the unit digit is 4.

 

Question 3: Find the unit digit of 342812.

 

Answer: 812/4 = 0, so 24, hence the unit digit is 6.

 

Note: प्रश्न 3 के अनुसार, यदि 812 को 4 से भाग दिया जाए, तो परिणाम 0 प्राप्त होता है। ऐसी स्थिति में, 2 की घात 4 का इकाई अंक ही हल होगा। यह नियम 2,3,7,8 पर भी लागू होगा।

 

 

 

 

 

 

Thursday, July 17, 2025

Competition syllabus of Math

                                                  Competition syllabus of  Math

Thursday, July 10, 2025

प्राचीन इतिहास की कहानी

 


प्राचीन इतिहासमानव इतिहास का वह काल है जो लेखन प्रणाली के विकास से लेकर प्राचीन काल के अंत तक फैला हुआ है। इस काल में आदि मानव काल, सिंधु घाटी सभ्यता, वैदिक काल, मगध साम्राज्य - बृहद्रथ वंश, हर्यक वंश, शिशुनाग वंश, नंदवंश, मौर्य साम्राज्य, शुंग वंश, कण्व वंश, सातवाहन वंश, यूनानी शाशक – (Indo-Greek/ हिंद यवन , शक वंश, पार्थियन वंश, कुषाण वंश), गुप्त साम्राज्य, वर्धन साम्राज्य और कई अन्य महत्वपूर्ण घटनाएं शामिल हैं।

प्राचीन इतिहास को आमतौर पर तीन युगों में विभाजित किया जाता है: पाषाण युग, कांस्य युग और लौह युग। जिसे प्रागैतिहासिक काल, आद्य ऐतिहासिक काल और ऐतिहासिक काल में रखा गया है। पाषाण युग प्रागैतिहासिक काल और कांस्य एवम् लौह युग आद्यऐतिहासिक काल का भाग है।

1. सिंधु घाटी सभ्यता:

·         यह 2500 से 1750 ईसा पूर्व तक फली-फूली, और यह भारत की सबसे पुरानी शहरी सभ्यताओं में से एक थी।

·         आद्य-ऐतिहासिक काल की सभ्यता कहि जाती है।

·         हड़प्पा और मोहनजोदड़ो इसके प्रमुख शहर थे, जो अपनी सुनियोजित सड़कों, पक्की ईंटों के घरों और उन्नत जल निकासी प्रणाली के लिए जाने जाते थे।

·         सिंधु घाटी सभ्यता के लोग कृषि, व्यापार और धातु विज्ञान में कुशल थे। 

2. वैदिक काल:

·         यह 1500 से 600 ईसा पूर्व तक का काल है, जब वेदों की रचना हुई थी। 

·         यह काल आर्यों के आगमन और भारतीय संस्कृति और धर्म के विकास के लिए महत्वपूर्ण है। 

·         वैदिक साहित्य, जैसे ऋग्वेद, हमें उस समय के सामाजिक, धार्मिक और राजनीतिक जीवन के बारे में जानकारी प्रदान करता है। 

3. मौर्य साम्राज्य:

·         यह 322 से 185 ईसा पूर्व तक का काल था, जब चंद्रगुप्त मौर्य ने मगध में एक विशाल साम्राज्य की स्थापना की थी।

·         अशोक महान, मौर्य साम्राज्य के सबसे प्रसिद्ध शासकों में से एक थे, जिन्होंने बौद्ध धर्म को अपनाया और इसे पूरे उपमहाद्वीप में फैलाया।

·         मौर्य साम्राज्य अपने प्रशासनिक और सैन्य संगठन के लिए भी जाना जाता था। 

4. गुप्त साम्राज्य:

·         यह 320 से 550 ईस्वी तक का काल था, जिसे भारत के "स्वर्ण युग" के रूप में जाना जाता है।

·         गुप्त शासकों ने कला, साहित्य, विज्ञान और गणित के क्षेत्र में महत्वपूर्ण योगदान दिया।

·         इस काल में आर्यभट्ट, वराहमिहिर और कालिदास जैसे महान विद्वान हुए। 

प्राचीन भारत की कहानियां हमें अपने अतीत को समझने और अपनी संस्कृति और विरासत पर गर्व करने में मदद करती हैं।